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Abstract. A simple model is presented for predicting the numerically ‘observed‘ sequence of 
ground states (css) of ZD electron droplets and quantum dots in strong magnetic fields. The 
model is based on the assumption that exchange and correlation in the m e l m a  gas induce 
gaps in the lowest Landau level, producing a sub-landau level (SLL) structure. The sequence 
of ass results from filling the sus  as the total angular momentum L is increased. Using the 
numerically ‘known’ energies (for a few L) for N < 6 we present a fit formula to predict, to 
within 2% accuracy, the css for higher N and L for which exact diagonalization results are 
unavailable. Typical results far N = 6. 7 and 10 droplets are presented. 

1. Introduction 

The physics of interacting 2D finite N-electron systems (quantum dots, droplets) has been 
the object of recent experimental and theoretical studies (see e.g. Thornton et a1 1986, 
Merkt 1990, McEuen et a1 1991, Kastner 1992, Chakraborty 1992, Maksym 1993, Dharma- 
wardana et al 1992, Yang et al 1993). Analytical and numerical techniques have provided 
results for the ground state (GS) energy E ( L )  of small disc-shaped N-electron systems, viz., 
quantum dots or droplets, as a function of the total angular momentum L. Laugblin’s early 
study (Laughlin 1983) of a three-electron system considered a 2 0  electron droplet as well 
as its quadratic confinement via a ‘pressure’ term and essentially laid the groundwork for 
studies on quantum dots. The work of Girvin and Jach (1983), Maksym and Chakraborty 
(1992), Merkt (1990), Hawrylak (1993) and others, and the recent work of Yang etal (1993) 
for N = 6 for total angular momenta L going up to 45 for quadratically con6ned electrons, 
provide ‘benchmark’ results for the interpretation of experiments and for understanding the 
physics of correlated electrons. However, calculations for larger values of N, or larger 
L, become numerically prohibitive as the number of Slater determinants to be included 
increases very rapidly with N and L. Thus simple electrostatic models, constant-interaction 
(e.g., Coulomb blockade) ‘charging’ models, etc are often used in interpreting experiments 
and simply ignore the quantum physics of the problem. A more satisfying approach, which 
exploits the simplifications found in certain limiting situations for predicting the GS for a 
given N ,  L and B, and tailored to the results of exact quantum calculations, could often be 
more useful in this context. The objective of this paper is to provide just such a ‘pocket 
calculator’ model, for the strong-field, large-L limit, which corresponds to filling factors 
w < 1, constructed to obtain agreement with existing ‘benchark‘ calculations based on 
more fundamental approaches. After establishing the consistency of our model with existing 
results, we make predictive calculations for N = 7, 10-electron droplets for which numerical 
results are still unavailable. We also extend the range of energies E ( L )  for N = 5.6 beyond 
the L values so far available from exact diagonalizations. 

0953-8984/95/214095t10$19.50 @ 1995 IOP publishing Ltd 4095 
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2. Basic ideas behind the model and its regime of applicability 

Non-interacting ZD elect” in a field B and confined by a potential of the form im*wir2 
can be treated exactly, giving single-particle states (n, e) where n relates to the Landau level 
index in the high-field limit, When the Coulomb interaction is included, the many-body GSS 
can still be labelled using the total angular momentum L = E, li where ti is the angular 
momentum of the ith electron. The numerical diagonalizations provide a sequence of GSS 
as a function of L,  which is optimal for the given confmement energy, Coulomb interaction 
and the field B. However, exact results for even moderate N, while clearly necessary for the 
interpretation of experiments, remain computationally prohibitive. This has led to the use 
of single-electron models, electrostatic ‘charging’ models, or models using a few interacting 
electrons even when N is not small. The objective of this paper is to use a few simple 
assumptions and construct a simple model, which correctly predicts the main sequence of 
many-body GSs as a function of L ,  for N-electron systems confuted to the lowest Landau 
level. The model contains two fit parameters at three selected cusp points, which are fitted to 
reproduce the available ‘benchmark‘ data for N < 6. A one-parameter fit to the GS energy 
of the 2D gas in the FQHE regime, using similar assumptions, is given by Dharma-wardana 

We study the high-field spin-polarized, T = 0 K limit where the many-body GS 
energies separate into a confinement term E , ( L )  and an interaction term Ei(L) with 
E,(L) = Aw,N/2+ y ( L  + N) where w, = eB/mc. Here y = m’wiaL, with a; = fic/eB 
following Yang et al  (1993). The confinement energy increases linearly with L ,  but Ei(L) 
is discontinuous and decreases with L ,  since the Coulomb repulsion favours the ‘spreading 
out’ of the wavefunction associated with increasing L. The interaction energy Ei(L) in a 
quantum dot in a field B can be related to Ej(L) without confinement at a field EO = z2m*c/e 
where z2 = ( 4 4  + m:)’/*. We assume that B has been mapped onto BO and simply use the 
symbol B for the effective ‘external’ magnetic.field. Thus, in this approximation, all we 
need to study is the GS of the N-electron droplet in the effective field. Our objective is to 
predict E,(L)  as a function of L,  for arbitrary L and N, since E,(L) is simply y ( L  + N). 

Plots of Ei(L) obtained by numerical diagonalizations (Yang et al 1993) for N = 5 
and 6 are given in figure 1, as a function of the total angular momentum L,  scaled by 
L d n  = N(N - l)/2. Discontinuities in Ej with particle number or quantum number 
(e.g., L )  are common in the physics of clusters where the filling of discrete energy shells 
(‘incompressible’ states) occurs. The average filling factor v of a quantum droplet containing 
N electrons and total angular momentum L is given by v = L d n / L .  Laughli, Girvin and 
Jach, and subsequent authors, have speculated that the downward cusps (DCs) in Ei(L)  are 
in some way related to incipient quantum Hall effect- (Qm-) like condensations at filling 
factors v corresponding to the odd-denominator filling factors of the fractional quantum Hall 
effect (PQHE). However, strong DCs are found at values of v with even denominators, and 
at U where no stable FQm states are expected. Hence no clear correlation, except for the 
suggestion that D C ~  usually occur for A L  = N, was established. The A L  = N rule does not 
usually give magic fiIling factors U that agree with FQQHE fractions. Maksym (1993) made a 
careful study of the occurrence of ‘magic’ L values where D C ~  occur and concluded that if 
L = L ~ D  + kN, where k is an integer, then a stable GS (DC) occurs and the electrons are 
disposed at the corners of a regular N-sided polygon whose radius is equal to the classical 
circular orbit radius. However, DCS are also found at values of L that do not satisfy the 
above A L  = N rule or agree with an FQHE value of v .  Here we show that the basic idea of 
FQm-like condensation, when applied within the concept of the existence of a sub-Landau 
level (SLL) strucme in the lowest Landau level (U), correctly predicts the numerically 
observed cusp structure using the familiar FQHE fractions. 

(1995). 
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Figure 1. The interaction energy (in units of e2/&nL) per electron as a function of LIL,,,, with 
L,in = N(N - I)/% for N = 5,  6. 7 and 10. The calculated curyw (triangles) for N = 6 and 
N = 7 have been displaced upwards by 0.03 and 0.1 for clarity. 

The essential idea is that, just as the integer QHE is based on filled Landau levels, the 
FQHE is based on the existence of an SLL structure (i.e. energy gap structure) in the LLL 
(Dharma-wardana 1991, 1992, 1995). The splitting of the LLL into SLLs occurs at the FQHE 
filling factors as a consequence of the electron-electron interaction. Thus our ansatz is that 
at U = I /m ,  where m is an odd integer, the LLL is split into m SLLS (see appendix A). Some 
evidence for such structure is seen in numerical studies of 2D electron systems in magnetic 
fields (e.g., see Rejaei 1993), and perhaps also in the surprisingly large oscillatory ‘shell 
stTucture’ found (Mitra and MacDonald 1993) in the angular momentum state occupation 
number distributions of Laughlin droplets. The SLLS themselves can be further split into 
sub-sub-landau levels (i.e. a higher level of energy gap smcture), as seen in the hierarchy 
scheme (Haldane 1983, MacDonald el al 1985) of the FQHE. Instead of using an SLL concept, 
the composite fermion approach of Jain (1989) uses a hierarchy of integer quantum Hall 
states to map the fractional quantum Hall fluids. More remarks about the composite fermion 
approach are given in appendix B. 

Thus our model is based on looking at magic L values in the LLL and in the sus ,  
keeping in mind that infinite N-electron systems, edge effects not found in the infinite fluid 
come into play. 

3. Prediction of ‘magic’ L values for N-electron droplets and quantum dots 

We consider the high-field limit interaction energy Ej of the N-electron droplet. The lowest 
possible angular momentum state for N electrons has L = L d o  = N ( N  - 1)/2, with the 
electrons occupying the LLL (n = 0) and angular momentum states e = 0,1, . . , , N- 1. The 
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wavefunction is a Slater determinant (sm) with filling factor v = L/L,,,in = 1. Consider 
the case L = 3L,,,in. The nominal filling factor U = 4. Alternatively, we picture this as 
consisting of three SLLS, each full, using renormalized particles with charge 4 (or particles 
of unit charge with a renormalized effective magnetic field B* = B/3 (see appendix A)). 
If we denote the filling factors of SLLS labelled s by U;, then, when L = kL,,,in, we have 
enough states to form k SLU, each of which is full, i.e. with 'effective filling factors U: = 1, 
s = I ,  2 ,  . . . , k .  That is, the nominal filling factor I l k  is interpreted as the complete filling 
of k SLLs. Completely filled SLLs correspond to specially stable GSS and hence give rise to 
DCS. There is no difficulty with even values of k :  their special stability should disappear 
as the number of electrons N tends to infinity. The case k = 2 has been described by a 
gapless Fermi-liquid-like theory (Halperin et al 1993) for the large-N limit of a uniform ZD 
electron gas. We discuss the case k = 2 for finite N below. 

c L < 2L,,,in. There are enough L states to fiIl one SLL 
but the second SLL will be only partially filled. Since all quasielectrons participate equally 
in the SLLS, we must have L - L,,,in > N to have an effective SLL. Thus L = L,,,in -t N 
corresponds to the case where the additional increment in L over L d o  is just sufficient to 
provide one flux quantum (one vortex) per electron in the new SLL. Hence L = L,,,in + N is 
expected to be a DC. This case also corresponds to the A L  = N rule discussed by Laughlin 
and also examined by Maksym When we go from L e n  to L d n  + 1 the interaction energy 
does not change. Then, until L = L,. + N the interaction energy Ei decreases essentially 
qunsilinearly with L as each flux quantum (vortex) corresponding to each increment of L 
binds to an electron and increases the screening. Thus the first important DC occurs at 
U; = N / L ~ " ,  This corresponds to the nominal filling factor U = (N - 1)/(N + 1) and is 
not necessarily a familiar F Q ~  fraction. 

Suppose L e D  + N c L < 2L,,,i0. The first SLL is filled (i.e. U; = 1) and the second 
SLL has U; = ( L  - L,,,ia)/L,,,in. If uf is of the form p / q  where q is an odd integer, then U; 
will also define a DC and the second SLL acquires its own S U ~ S L L  structure similar to the 
hierarchy structure found in an FQH liquid. Unlike in the infinite 2D electron gas, we assume 
(see below) that the two-SLL case, L = 2L,,,in, U = 4. i.e. U; = I ,  U; = 1, defines states 
separated by an energy gap (for finite N ,  due to the edge energy) and this would correspond 
to a DC, with a wavefunction approximately corresponding to a product of two functions, 
viz., that corresponding to SLLs U; and U;. In the case of a three-electron droplet, v = is 
obtained for L = 6,  with L d n  = 3. The analytic many-body wavefunction (Laughlin 1983) 
can in fact be written in an approximate product form as 

Consider an L such that 

ucu; = U; = I )  = I Z d 3 Z j :  - z ~ ~ e x p ~ - l z ~ l * / 4 ~ l l z b ~ 3 z ~  - z:, exp(-lzbl2/4)1 (1) 

where za and z b  are given in terms of the two relative coordinates ZL and zz defined 
relative to the centre of mass of the three-particle system, viz., za = ($)"'(z~ + 22) and 
Zb = ($)'P(z~-zz). The GSS of N-particle droplets, for small N, resemble small crystallites, 
which become liquid-like for large N .  While U = f requires a careful description for large 
N, a 'Wigner molecule'- (Maksym 1993) type description is probably appropriate for U = 
at finite N .  

Our discussion implies that DCS do not depend on U = L,,,i,,/L, but on (L-kL, , , in) jLdn 
where k defines the last filled SLL with U: = I .  Since L,,,in = N(N - l)/2, different N 
will emphasize different FQHE p / q  fractions. In table 1 we give the predicted GSS at DCS 
for N = 6, 7 and IO, based on the assumption that for a given nominal filling factor U, if 
the SLL filling U; is unity or an F Q E  p / q ,  then we have a DC (the A L  = N rule already 
mentioned is used only for the first DC after L = L h n ,  other remarks are given below). 
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The cusps predicted using these ideas agree with published N < 6 exact diasonalization 
results. Thus Yang et nl (1993) report L = 15.21, 25, 30, 35. 39.40 and 45 for the GS of 
the fully spin polarized N = 6 quantum dot, indusive of the confinement energy. A direct 
examination of only the interaction energy (Yang 1994) in the high-field limit for N = 6 
shows DCs ai L = 15, (19, 20). 21, 25, 27, 30, 33, 35, (36), 39, 40 and 45, where the 
parentheses indicate weaker DCS. For N = 5 Yang et nl obtain (Yang 1994) DCS at L = IO, 
(14), 15. 18, 20, 22, 25, (26) and 30. All the main DCs are picked up by our ‘aufbau’ 
procedure. 

Table 1. The ’mgic’ values of lhe total angular momentum, giving favoured GSS (DCS) for 
N = 6, 7 and IO. predicted using the model of su filling, in lhe high-fiefd limit for nominal 
filling factors f < v < 1. For N = 10 DCS should also occur at L = 65.70 and 81 for v; = 5 ,  
$ and 2 and L =99, 100, 105 and 110 for = $, 3, $ md $. These are in figure I but not 
listed below for brevity. We also give the nominal filling faclor Y = L,,/L for N = 10. The 
fmuions marked with an asterisk correspond to v = (N - 1)/(N + 1). 

N = 6  N = 7  N=10 

L iu:i L (v:l L {$I ” 
15 1 21 I 45 1 I 

9 

7 21 I .  $ 8  28 1. f* 55 1.3‘  

25 I .  3 35 1. 60 1.; I 27 I .  $ 42 1.1 63 1,: 7 5 

30 1 . 1  49 1.1, f 72 1 . 3  s 
33 I .  1. 51 I .  1. 1 75 I .  f ii 
35 1, 1. f 54 I.  I .  4 90 I ,  I 2 

40 1. 1. ?j 125 1.1.; & 
45 1. I .  I M5 I .  I .  1 4 

5 

3 

I 

36 I .  1. f 58 1. 1. f IO8 1.1. $ 2 
39 I ,  I .  3 63 1.1.1 117 1.1, 3 { 

As already stated, our ‘aufbau’ principle is based mainly on applying ideas valid for the 
bulk FQHE liquid (i.e. IargeN limit) to droplets (i.e. finite N); as in the bulk FQHE fractions 
with large denominators should be excluded. For N-electron systems we retain the familiar 
FQm,  fractions p / q .  but with q 6 N - 1. The N - 1 denominator is admitted only if the 
phase space (defined by L )  is large enough, i.e., e.g., for filling the third SLL. 

The discussion given so far enables us to predict the values of L for which DCS will 
occur. Given that this is a simple ‘first-order’ theory, there could be some ambiguities as 
we do not fully understand how edge effects and ‘bulk effects’ compete. That is, we should 
expect that we can predict the main DCS, but some cusp smctures that arise from a subtle 
interplay of several effects would remain beyond the resolution of the present approach. We 
also need a method for estimating the magnitude Ei(L) of the interaction energies without 
resort to detailed computation. This will be taken up in the next section. Plots of Ei(L) as 
a function of L / L ~ a  are given in figure 1, based on the method indicated in the following 
section. 

4. Calculation of interaction energies by fitting to three ‘benchmarks’ 

In comparing interaction energies E ( L ,  N) of N-electron droplets with total angular 
momentum L ,  we should compare them in their ‘corresponding’ filling factor states, viz., 
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E(u; ,  U;, U;, . . .; N) for different N. That is, electron droplets with the same SLL filling 
will form a sequence for fitting the interaction energy as a function of N. Thus for example, 
if we take U = f, i.e. U; = U; = U; = 1, then &(U = f, N) will form a sequence in N 
to which parameters could be fitted to extract the ‘bulk‘ and ‘edge’ contributions to the 4 
droplet energy. The sequence Ei(u = 1, N) would be another, different, sequence. There 
is a multitude of these sequences which, for N + CO. lead to the GS energies of the FQHE 
fluids at each U. However, we use only three of these sequences to construct all the cusp 
sequences as a function of N. That is, we use the results of N = 5 and 6 from Yang et nl 
(Yang 1994) for three ‘benchmark‘ energies, viz., E(Lhn) ,  E(L,,,in + N) and E(2L,,,in), to 
‘bootstrap’ for all other L and N. Here E(L& defines the interaction energy of !he v = I ,  
viz., full single determinant. The DC at E(&,,+ N) is a genuine finite-N-dependent effect. 
Similarly, U = $, i.e. U; = uf = 1, for finite N is more akin to two independent Landau 
levels rather than to the subtle Fermi liquid of Halperin er al (1993). Since the energy will 
consist of an ‘edge energy’ proportional to N, and a bulk term varying as N2, we let 

E(u:; N) = n(u:)N + b(v:)N2 (2) 

and obtain 

E(L,,,io) = 0.065268N +0.125986N2 

E(Lhn -I- N) = -0.051 433 1N + 0.127036N’ 

E ( 2 L h d  =0.071345ON +0.08721NZ 

by fitting to results of Yang et al (1994). We also have, E(Lhn + 1) = E(L,i,) for 
arbitrary N. It appears that if the angular momentum Ld = (U:) defines a DC, then 
E(Ld + 1)  m E(Ld) ,  suggesting that some form of Hvz-like theorem (Avron e t &  1978) 
applies, even approximately, at each L d .  The energies from L h n  + 1 to Lhn  + N are 
assumed to be a quasilinear decrease in L .  The physical picture is that, as additional flux 
quanta (vortices, i.e. density defects or exchange-conelation holes) are created by increasing 
L, they bind to electrons and contribute to the screening, thus decreasing the energy. 

N) = a’(Ld)d’Z + b’(Ld)u where U is the bulk filling factor. 
We have pointed out (Dharma-wardana 1995) that when we go from a U = 1 fluid to a 
U = I/” FQHE liquid, the energy scales as u’n. Hence, using this ‘ut/2 scaling ansatz’ the 
fitting coefficients for arbitrary FQm fractions can be predicted to be given by 

n ( l / m )  = 0.065268(1/m)’/4 b ( l / m )  = 0.125986(1/m)’/2. (6) 

(2) is of the form 

Thus we can predict that a(l/m) = 0.0496, b ( f )  = 0.0727 while actual fits to the data of 
Yang et al (Yang 1994) at L = 3Lhn give 

E(3L&) = 0.0480987N +0.0714927N2. (7) 

Thus, judging from this case, the U’/’ scaling ansufz gives energies to better than 2% 
accuracy, and provides coefficients U and b at other filling factors (e.g.. U = f .  i.e. 
L = 5Lk” .  U = 4 etc) where microscopic results are lacking. The success of the ut/’ 
scaling ansarz shown by Dharma-wardana (1995) suggests that the 2% accuracy obtained 
here is probably typical. Using the U’” scaling ansafz (6) the energies E ( L  = 75) at U = f 
and E ( L  = 105) at U = f for N = 6 are predicted to be 0.3817 and 0.3258 units of e 2 / m L  
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per electron. DCS for 45 < L < 105 are predicted at L = 45.48. 50, 51, 54, 55, 60, 63, 65, 
66,69,70,75,78,80, 81,84,85,90,93,95,96,99, 100 and 105. No exact diagonalization 
results are currently available in this regime. 

In summary, (6) extends available numerical E ( L ,  N )  data to higher L and N values. In 
constructing the function E(L .  N) for arbitrary N we use equations (3). (4) and (5) together 
with the U’/* scaling of (6) when numerical ‘benchmarks’ are lacking. The interaction 
energies calculated by this procedure for N = 6, 7 and 10 are shown in figure 1. 

5. Quality of the fit for N < 5 

In figure 1 we show, e.g., for N = 6, data points for 32 filling factors, of which it is 
sufficient to fit just three values, e.g., U = 1, U = (N - I ) / ( N  + 1) and U = 2, to reproduce 
exact diagonalization results. We have actually included the case U = 3, i.e. (7), as well to 
increase our accuracy, rather than using the U’/’ scaling ansatz of (6). 

How good is the parametrization for reproducing the energies for N < 5? Since our 
model is based on the mapping 

quantum dot + quantum droplet + uniform 2D gas 

with the assumption that the bulk terms dominate the edge effects, it is to be expected 
that the results would be poor for small N .  Even in the case N = 6, if the six electrons 
are placed at the vertices of a hexagon, there are six internal interactions and six edge 
interactions along the perimeter. However, the situation seems to be quite analogous to that 
of the local density approximation of density functional theory, or Thomas-Fermi theory 
where an N-electron atom is modeled by a suitable jellium approximation. In our case we 
have used some inputs €room the N = 5 and 6 cases. Thus the two-, three- and four-electron 
cases would correspond to treating the He, Li and Be atoms using some results for the 
energy of B and C extrapolated to the jellium model. It turns out that the pamneterizations 
given by (2H7) significantly overestimate the interaction energies for the case N = 2, but 
work quite well for N = 3 and 4. In the N = 2 case, there is only a single interaction and 
hence the parameterization in terms of ‘edge’ and bulk interactions, implicit in (2) becomes 
invalid. If we consider the case N = 4, (3), (5) and (7) predict E ( L ,  N = 4) for L = 6, 12 
and 18 to be 0.569.0.420 and 0.334 (in units of e2/&a, per electron) respectively compared 
with the values 0.55.0.42 and 0.32 of Girvin and Jach (1983). For N = 3, L = 3 , 6  and 9, 
the fit formulae predict the energies 0.443, 0.333 and 0.262, compared with 0.4, 0.29 and 
0.24 visually estimated from the figure of Girvin and Jach (1983). However, our fit model 
is irrelevant for small N where results of exact calculations are available. 

6. Cooelusion 

We have presented a simple ‘pocket calculator’ model for the determination of the interaction 
energy of a 2D droplet of electrons in a stmng mgnetic field to within 2% accuracy for 
large N and L. The interaction energy can now be simply combined with the confinement 
energy and approximate results for the GS energy of electrons in nanostructures can be easily 
obtained, even for N and U well beyond those accessible by exact diagonalization methods. 
The method ‘bootstraps’ form, e.g., three values of the numerically observed GS energies 
at nominal filling factors U = 1, (N - 1)/(N + 1) and $, supplemented by a number of 
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theoretical ideas regarding the uniform fluid in the F Q E  regime. The main ideas are that 
(i) energy gaps are created in the LLL, generating an SLL structure, due to electron-electron 
XC effects, (ii) DCs in energy, i.e. stable GSS, appear at familiar FQHE-like filling factors 
referred to these SLU and (iii) increase of L between D a  corresponds to the creation of 
vortices (flux quanta), which bind to electrons and reduce the Coulomb interactions in a 
quasilinear manner. The strong-field Gss of quantum dots with a central antidot can also 
be treated by including the edge energies for an outer edge and an inner edge, using the 
functional form of the edge energy from (3)-(6). These ideas can eventually be extended 
to quantum dots in the partially spin-polarized, weak-field regimes, but this is outside the 
scope of this paper. 
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Appendix A 

As far as the present work is concerned, the proposed SLL structure really requires that the 
LLL has energy gaps that could be relabelled as ‘subLL’ gaps. However, as a matter of 
wider interest we point out (Dharma-wardana 1992, 1995) that the Laughlin wavefunction 
for a filling factor v = l / m  can be written in the form of a product of m SLDs: 

@(U = I / m )  = n @s(Zls*Z2rl . . . zNs)a(Zis, Z i )  (AI) 
$=I. .... m 

Here a:’ = ma2 is an effective magnetic length at an effective magnetic field B’ = B/m. 
When m = 3 we have three species (s = 1,Z. 3) and three SLDS @&js. z a , .  . . , 2 ~ ~ ) .  
each containing N particles, with one particle of each species at each coordinate zis. In 
Laughlin’s wavefunction there are m particles bound together at the coordinate zj, i.e. as 
imposed by S(zj,, ZW). A more general form would use a correlation function g(zi , ,  zis) for 
G(zis, zis,), Thus the S(z;,, zj3,)  condition may be viewed as a ‘mean-field‘ approximation 
inherent in the Laughlin form. In th is  picture the electron charge is distributed over m 
components, and the electron is replaced by a quasielectron carrying a single vortex. The 
filling up of energy states in the sus is an ‘aufbau’ process using these quasielectrons. 
Since the effective field B* is B / m ,  the effective filling factor U* = 1 and (Al) describes 
m ’full’ SLLS of renormalizedpartides. 

Appendix B 

In this appendix we make some, necessarily brief, remarks about the composite fermion 
method (Jain 1989). Its application to the prediction of GS energies of quantum dots (Jain 
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and Kawamura 1994) was brought to our attention in the course of the preparation of this 
paper. As discussed by Dharma-wardana (1992), our approach to the FQHE states of the ZD 
electron gas was suggested by density functional theory (DFT) ideas. In DFT the exchange 
and correlation effects produce an exchange-correlation gauge field A,(u) whose effect is 
(in OUT view) equivalent to a Chern-Simons field in creating an effective field B* = B / m  
wherein the renormalized electrons have a filling factor U* = 1. However, as far as this 
paper is concerned, the assumptions needed are (i) that the LLL is split into m sus for the 
case v = l / m ,  (ii) that the filling up of these levels by renormalized particles occurs to 
give specially stable filling factors corresponding to filling individual SLLS (as in the integer 
quantum Hall effect) and partial fillings (as in the WHE) of SLLS and (iii) that information 
from, say, a few special filling factors for N = 5 and 6 can be used to predict all other 
energies and energy cusps for other N and L.  As long as these are treated as assumptions, 
ours is a ‘model’ rather than a ‘fist-principles theory’ of electron energies in quantum dots 
and WHE liquids. 

In the composite fermion approach the LLL is not split into SLLS, but higher Landau 
levels are actually invoked. The electrons distribute among several Landau levels while 
binding an even number of flux quanta to become essentially non-interacting ‘composite 
fermions’. The higher Landau levels are at energy scales involving multiples of hw,, that is, 
at very high energies in the l i t  of B -+ w considered by Jain and Kawamura. These are 
then supposed to map into quasi-Landau levels of composite fermions with an effective gap 
ha:, due to the binding of 2m flux quanta per electron. Although there seem to be prima 
facie similarities between the composite fermion description and OUT description motivated 
by DFT, we have not been able to establish a rigorous equivalence. However, it is pertinent 
to remark that while D ~ T  describes the GS of interacting systems as simple products of SIDS, 
with the exchange-correlation effects included via the potentials V,, and A, of current 
DFT (Vignale and Rasolt 1988), composite fermion theory includes exchange-correlation 
effects via Jastrow functions, which multiply the Slater determinants. In DFT, the ‘Kohn- 
Sham eigenfunctions’ are not considered to be wavefunctions, while the composite fermion 
approach claims to actually provide many-body wavefunctions. The situation is probably 
analogous to the HyUeraas description of the He atom using an SLD multiplied by a Jastrow- 
type factor, while the density functional treatment of He merely uses a single SLD, but with 
a V&(r)] added to the Hartree Hamiltonian, where n(r)  is the electron density profile of 
the He atom. The two descriptions both use an SLD to describe fermions, but beyond that 
the methods are not easily translated from one to the other. 

Jain and Kawamura (1994) introduce a kinetic energy mapping from higher Landau 
levels to the effective angular momentum L” of non-interacting composite fermions and 
then an ansatz for the composite fermion interaction energy is also introduced. Now, using 
exact diagonalization results for N < 6 and fitting the effective cyclotron energies, these 
authors show that their assumptions are consistent with the available exact diagonalization 
results (the DC at L = 40, for the case N = 6. does not seem to have been captured by these 
authors), thus further substantiating the composite fermion approach. It is not easy for an 
experimentalist to use their formalism to make similar calculations, or extend the results to 
higher L or N. In fact the authors have not gone beyond the N = 6 case in applying their 
method although some results for cusp sizes up to N = 8 have been given. In effect, their 
approach is directed more towards a demonstration of the validity of composite fermion 
concepts than to the derivation of a simple calculational model. By contrast. our approach, 
while being admittedly less buttressed by a microscopic theory, is presented as a ‘pocket 
calculator model’, which is meant for rapid but reliable calculations of cusp structure and 
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energies of quantum dots and droplets in the strongfield regime. It is also hoped that our 
results will stimulate further work on exact diagonalizations for larger values of N and L .  
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